Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Satya Murti Prasad,* Satish Chandra Gupta and Asha Rani

Department of Physics, Ranchi University, Ranchi 834 008, India.

Correspondence e-mail:
prasadsm50@hotmail.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.011 \AA$
R factor $=0.071$
$w R$ factor $=0.186$
Data-to-parameter ratio $=13.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

2-(p-Bromophenylhydrazono)-3-oxobutanoic acid

The skeleton, without hydrogen atoms, of the title molecule, $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{BrN}_{2} \mathrm{O}_{3}$, is planar, and intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds contribute to this planarity. The molecules exist in the stereoisomeric Z form.

Comment

As a part of our project to study the crystal structures of a series of phenylhydrazones and their stereochemistry, the crystal structure of the title compound, (I), has been determined.

(I)

Earlier, this laboratory has reported two related structures, viz. 2-(2-methoxyphenylhydrazono)-3-oxobutanoic acid (Rani et al., 2002a) and 3-oxo-2-(phenylhydrazono)butanoic acid (Rani et al., 2002b), compound (I) being a Br derivative of the latter. The replacement of an H atom by a Br atom has effectively increased the volume of the cell by $24.92 \AA^{3}$ per Br atom. The bond lengths and angles in (I) show normal values and are comparable with those observed in the two reported structures. The molecule is nearly planar, with atoms O1 and C10 displaced from the mean least-squares plane by -0.108 (5) and 0.127 (10) \AA, respectively (on opposite sides). The planarity of the molecule is facilitated by the intramolecular hydrogen bonds. The $\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}$ bond is involved in the formation of a bifurcated hydrogen bond; the shorter interaction, called the major component (Steiner, 2002), is an intramolecular $\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N} \cdots \mathrm{O} 2$ hydrogen bond with the carbonyl O atom of the carboxyl group, whereas the longer one, the minor component, is an intermolecular $\mathrm{N} 1-$ $\mathrm{H} 1 \mathrm{~N} \cdots \mathrm{O} 2(-x, 1-y, 1-z)$ hydrogen bond, pairs of which link two molecules across a centre of symmetry (Table 3). The carbonyl O atom of the carbomethoxy group is also involved in an intramolecular $\mathrm{O} 1-\mathrm{H} 1 \mathrm{O} \cdots \mathrm{O} 3$ hydrogen bond with the carboxyl group (Fig. 1). Along the b axis, the molecules related by inversion are stacked alternately 3.419 (5) and 3.490 (5) A apart, optimum distances for $\pi-\pi$ stacking interactions. The short contacts observed in the structure are listed in Table 2. The distance $\mathrm{O} 2 \cdots \mathrm{O} 2(-x, 1-y, 1-z)$ of $2.888(8) \AA$ is less than the sum of the van der Waals radii, but, since the $\mathrm{C} 8-\mathrm{O} 2$ bond length is 1.217 (9) $\AA, \mathrm{O} 2$ is the double-bonded

Received 7 November 2002

Accepted 26 November 2002 Online 30 November 2002
carbonyl O atom, hence the $\mathrm{O} 2 \cdots \mathrm{O} 2$ contact must be regarded as a strong van der Waals interaction.

Experimental

The title compound, (I), was prepared by the partial hydrolysis of ethyl 2-(2-bromophenylhydrazono)-3-oxobutyrate by the action of strong acids (Prasad et al., 1994) and was recrystallized from methanol at room temperature.

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{BrN}_{2} \mathrm{O}_{3}$	$Z=2$
$M_{r}=285.10$	$D_{x}=1.743 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Cu K radiation
$a=7.058(4) \AA$	Cell parameters from 25
$b=7.126(3) \AA$	reflections
$c=11.311(6) \AA$	$\theta=17.7-39.9^{\circ}$
$\alpha=77.05(3)^{\circ}$	$\mu=5.14 \mathrm{~mm}^{-1}$
$\beta=86.35(4)^{\circ}$	$T=293(2) \mathrm{K}$
$\gamma=78.47(5)^{\circ}$	Elongated plate, light yellow
$V=543.1(5) \AA^{3}$	$0.25 \times 0.19 \times 0.13 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4 diffractometer

$\omega-2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.756, T_{\text {max }}=0.989$
2079 measured reflections
1912 independent reflections
1171 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.071$
$w R\left(F^{2}\right)=0.186$
$S=0.90$
1912 reflections
147 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.1211 P)^{2}\right] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=1.11 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.91 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0018(11)
\end{aligned}
$$

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

$\mathrm{Br}-\mathrm{C} 4$	$1.901(7)$	$\mathrm{N} 1-\mathrm{C} 1$	$1.414(9)$
$\mathrm{O} 1-\mathrm{C} 8$	$1.330(9)$	$\mathrm{N} 2-\mathrm{C} 7$	$1.302(9)$
$\mathrm{O} 2-\mathrm{C} 8$	$1.217(9)$	$\mathrm{C} 7-\mathrm{C} 9$	$1.462(10)$
$\mathrm{O} 3-\mathrm{C} 9$	$1.233(9)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.502(12)$
$\mathrm{N} 1-\mathrm{N} 2$	$1.302(8)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.487(12)$
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 1$	$119.2(7)$	$\mathrm{C} 9-\mathrm{C} 7-\mathrm{C} 8$	$120.6(7)$
$\mathrm{C} 7-\mathrm{N} 2-\mathrm{N} 1$	$122.5(7)$	$\mathrm{O} 2-\mathrm{C} 8-\mathrm{O} 1$	$120.3(8)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	$118.8(8)$	$\mathrm{O} 2-\mathrm{C} 8-\mathrm{C} 7$	$122.1(7)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{N} 1$	$120.4(7)$	$\mathrm{O} 1-\mathrm{C} 8-\mathrm{C} 7$	$117.6(7)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{Br}$	$120.0(5)$	$\mathrm{O} 3-\mathrm{C} 9-\mathrm{C} 7$	$120.7(8)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{Br}$	$119.2(6)$	$\mathrm{O} 3-\mathrm{C} 9-\mathrm{C} 10$	$121.3(7)$
$\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 9$	$115.8(8)$	$\mathrm{C} 7-\mathrm{C} 9-\mathrm{C} 10$	$118.0(8)$
$\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 8$	$123.6(6)$		
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 7$	$-179.7(6)$	$\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 8-\mathrm{O} 2$	$4.0(11)$
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$177.3(6)$	$\mathrm{C} 9-\mathrm{C} 7-\mathrm{C} 8-\mathrm{O} 2$	$-175.3(7)$
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6$	$-5.2(9)$	$\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 8-\mathrm{O} 1$	$-174.7(6)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$179.4(6)$	$\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 9-\mathrm{O} 3$	$176.4(6)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$-179.7(6)$	$\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 9-\mathrm{C} 10$	$-2.4(10)$
$\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 9$	$-179.5(6)$	$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 9-\mathrm{C} 10$	$176.9(7)$
$\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 8$	$1.2(10)$		

Figure 1
An ORTEP-3 plot (Farrugia, 1997) of the title molecule, with 50% probability displacement ellipsoids for non-H atoms. Intramolecular hydrogen bonds are shown as dashed lines.

Table 2
Short intermolecular contacts (A).

$\mathrm{Br} \cdots \mathrm{O}^{\text {i }}$	3.547 (6)	N1 \cdots C $6^{\text {i }}$	3.461 (9)
$\mathrm{Br} \cdots \mathrm{O}^{\text {ii }}$	3.513 (7)	$\mathrm{N} 2 \cdots \mathrm{C} 1^{\text {i }}$	3.459 (9)
$\mathrm{O} 1 \cdots \mathrm{C} 2^{\text {iii }}$	3.413 (10)	$\mathrm{N} 2 \cdots \mathrm{C} 4^{\text {v }}$	3.550 (9)
$\mathrm{O} 1 \cdots \mathrm{C} 10^{\text {iv }}$	3.358 (11)	C3 . . $\mathrm{C}^{\text {i }}$	3.491 (11)
$\mathrm{O} 2 \cdots \mathrm{O} 2^{\text {iii }}$	2.888 (8)	$\mathrm{C} 4 \cdots 7^{\text {v }}$	3.569 (10)
$\mathrm{O} 2 \cdots \mathrm{C} 2^{\text {iii }}$	3.469 (10)	$\mathrm{C} 5 \cdots \mathrm{C} 8^{\text {i }}$	3.406 (11)
$\mathrm{O} 2 \cdots \mathrm{Cb}^{\text {iv }}$	3.558 (10)		
Symmetry c $x-1, y, z ;($	$-y, 1-z$	$1+x, y,$	-z; (iv)

Table 3
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N1-H1N \cdots O2	0.86	2.01	$2.656(9)$	131
N1-H1N \cdots O2 2 iii	0.86	2.53	$3.252(9)$	142
O1-H1O \cdots O3	0.82	1.81	$2.555(8)$	150

Symmetry code: (iii) $-x, 1-y, 1-z$.
After checking their presence in a difference map, all the H atoms were placed at calculated positions and were allowed to ride on their respective parent atoms.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The authors acknowledge with thanks Dr N. Prasad, Dr A. Sahay and their co-workers in the Department of Chemistry, BRA Bihar University, for the gift of crystals and the All India Institute of Medical Sciences, New Delhi, for the collection of the X-ray diffraction data.

References

Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.

organic papers

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Prasad, N., Prasad, R. M., Sahay, A., Srivastava, A. K. \& Prasad, J. (1994). Asian J. Chem. 6, 901-910.

Rani, A., Saha, A. P. \& Prasad, S. M. (2002a). Acta Cryst. E58, o805-o806.
Rani, A., Saha, A. P. \& Prasad, S. M. (2002b). Acta Cryst. E58, o1001-o1002.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Steiner, A. T. (2002). Chem. Int. Ed. 41, 48-76.

